NOTES

Preparation of $[{}^{3}H]$ -Labelled prostaglandin E_{1} by Hydrogenation of prostaglandin E_{2} over RhCl(PPH₃)₃

An example of selectivity in homogeneous hydrogenation

Received February 28, 1970.

INTRODUCTION.

Labelled prostaglandin E_1 (PGE₁) (Fig. 1), which is used in biochemical and biological studies, can be prepared biosynthetically ⁽¹⁾ from labelled dihomo- γ -linolenic acid or, particularly when high specific activities are required, by catalytic hydrogenation of prostaglandin E_2 (PGE₂) over a Pd-C-catalyst ⁽²⁾. The latter method, however, gives a complex mixture from which we could obtain PGE₁ in only 10 % yield.

We have now found that homogeneous hydrogenation of PGE₂ with RhCl(PPh₃)₃-catalyt ⁽³⁾ leads to much better results (yields up to 50 %).

EXPERIMENTAL.

Labelled hydrogen gas was obtained by reaction of ${}^{3}\text{H}_{2}\text{O}$ with LiAlH₄ in a vacuum line and subsequently stored over reduced pulverized BTScatalyst (ex Badische Anilin und Soda Fabrik) to remove traces of oxygen (see Fig. 2). Traps with molecular sieve 3A at -196° C were used for the transport of the gas. The time of contact of ${}^{3}\text{H}_{2}$ with the molecular sieve should be as short as possible, since the latter always contains slowly exchangeable hydrogen. Freshly prepared ⁽⁴⁾ RhCl(PPh₃)₃ was dissolved in a mixture of 2 ml benzene and 3 ml acetone in the presence of ${}^{3}\text{H}_{2}$ -gas at atmospheric pressure and added to the pure substrate at room temperature. The hydrogenation reaction was stopped by freezing the reaction mixture and trapping the hydrogen gas with molecular sieve.

An aliquot was directly esterified with diazomethane and analysed by gas liquid chromatography (GLC) at 227° C on a column of 5 % QF₁ on Diatoport S, pretreated with hexamethyl-disilazane ⁽⁵⁾. The rest of the mixture was worked up in the usual way ⁽⁵⁾ via thin-layer chromatography (TLC)

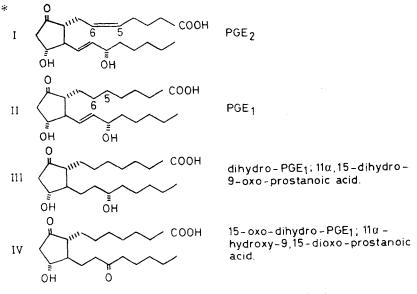


FIG. 1. Structural formulae of prostaglandin derivatives.

on 20 % AgNO₃-silicagel G plates, eluent $CHCl_3/CH_3 OH/CH_3 COOH/H_2O$ (95/7.5/1/0.6 v/v/v/v/). The plates were scanned with a Berthold thin-layer scanner for localization of the labelled products.

The amounts of PGE_1 and PGE_2 were determined by UV-spectrometry after alkali-conversion to PGB_1 and PGB_2 (ref. 6). Specific activities were determined by liquid scintillation counting in a Tricarb Model 3375.

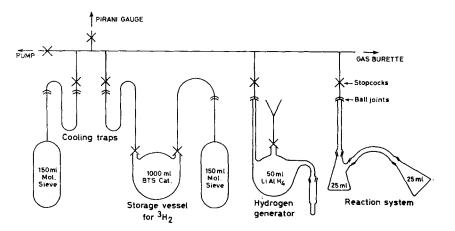


FIG. 2. Vacuum line for homogeneous catalytic hydrogenations with ³H₂.

RESULTS.

Apart from minor impurities, the reaction mixture consisted of 4 components with R_F values (TLC) of 0.6, 1, 1.3 and 1.7 ($PGE_1 = 1$) and retention times (GLC) of 0.9, 1, 1.1 and 1.3 ($PGE_1 = 1$), corresponding with PGE_2 , PGE_1 , dihydro- PGE_1 and, as appeared from infrared and mass spectroscopy, 15-oxo-dihydro- PGE_1 respectively. The latter product is probably formed from PGE_1 , since PGE_1 itself also gives this product in a labelled form when ${}^{3}H_2$ is applied under the same reaction conditions as described above.

Overall yields of 30-50 % PGE₁ can be obtained (see Table 1). The results suggest that a reaction time of 5-6 h gives the highest yields. The amount of dihydro-PGE₁ appears to increase with time; the influence of time on the formation of 15-oxo-dihydro PGE₁ is less pronounced.

The table 1 shows that the recovery of labelled PGE_1 is better when more material is handled.

	Catalyst (mg)	Reaction time (h)	Products* (%)				
2 ₂			Ţ	п	111	IV	Overall yield of PGE ₁ (%)
5	1.1	20	4.5	24	24.5	47	11
3	5	20	_	51		49	32
5	5	5.5	3.5	70	6.5	20	34
5	5	1	33	35	_	32	23
	5	17	6	19.5	29.5	45	20
	5	6	3	72	5	20	52.5

TABLE 1. Hydrogenation of PGE₂ with RhCl(PPh₃)₃.

* cf. Fig. 1.

DISCUSSION.

During homogeneous hydrogenation of isolated double bonds in the presence of RhCl(PPh₃)₃-catalyst isomerization does not occur ^(3,8–10). We have checked this for tritiated stearate obtained from oleate. The stearate contained > 99 % of the ³H at the 9- and 10-positions (for method of analysis see ref. 11). We assume therefore that PGE₁, labelled as described above, will contain ³H only in the positions 5 and 6.

Our results indicate that the homogeneous catalytic hydrogenation of PGE_2 occurs with a remarkable selectivity, which cannot solely be ascribed to the preferential hydrogenation of cis double bonds ^(3,12).

In a recent study of 15-epi-PGA₂, Weinheimer and Spraggins ⁽¹³⁾, using palladium as catalyst, also found preferential hydrogenation occurring at the cis double bond at position 5, which is in agreement with our findings.

We have used the method described above for the synthesis of PGE_1 with a specific activity of 9.2 mCi/mmole, but higher specific activities are easily attainable.

ACKNOWLEDGEMENT.

We thank Ir. H. Vonkeman for providing the pure PGE_2 samples and Dr J. Bus and Mr J. de Bruyn for the spectroscopic analyses.

G. K. KOCH* and J. W. DALENBERG**

Unilever Research Laboratories Vlaardingen/Duiven The Netherlands

REFERENCES

- 1. VAN DORP, D. A., BEERTHUIS, R. K., NUGTEREN, D. H. and VONKEMAN, H. Nature, 203 : 839 (1964).
- 2. SAMUELSSON, B. J. Biol. Chem., 239 : 4091 (1964).
- 3. OSBORN, J. A., JARDINE, F. H., YOUNG, J. F. and WILKINSON, G. J. Chem. Soc. A., 1711 (1966).
- 4. OSBORN, J. A. and WILKINSON, G. Inorg. Syn., 10: 67 (1967).
- 5. STRUYK, C. B., BEERTHUIS, R. K., PABON, H. J. J. and VAN DORP, D. A. *Rec. Trav. Chim.*, **85** : 1233 (1966).
- 6. BERGSTROM, S., RYHAGE, R., SAMUELSSON, B. and SJOVALL, J. J. Biol. Chem., 238 : 3555 (1963).
- 7. ANGGÅRD, E. and SAMUELSSON, B. J. Biol. Chem., 239: 4097 (1964).
- 8. JARDINE, F. H., OSBORN, J. A. and WILKINSON, G. J. Chem. Soc. A., 1574 (1967).
- 9. BIRCH, A. J. and WALKER, K. A. M. J. Chem. Soc. C., 1894 (1966).
- 10. SIMON, H., BERNGRUBER, O. and ERICKSON, S. H. -- Tetrahedron Lett., 707 (1968).
- 11. KOCH, G. K. J. Label. Compounds, 5: 110 (1969).
- 12. O'CONNOR, Ch. and WILKINSON, G. Tetrahedron Lett., 1375 (1969).
- 13. WEINHEIMER, A. J. and SPRAGGINS, R. L. Tetrahedron Lett., 5185 (1969).

* Olivier van Noortlaan, 120, Vlaardingen, The Netherlands.

** Postbus 7, Zevenaar, The Netherlands.